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TECHNICAL MEMORANDUM X- 53638

CONDUCTION MECHANISM IN ORGANIC SEMICONDUCTORS
By Satish C. Mathur

George C. Marshall Space Flight Center
Huntsville, Alabama

ABSTRACT

Several theories are examined for their usefulness in predicting
the mobility of charge carriers in organic semiconductors. A modified
band theory using Htickel Molecular Orbitals is shown to be applicable
after rejecting other available theories. The complex Molecular Orbital
calculations are simplified by the use of symmetry and group theory so
that they can be programmed in reasonable time on a large computer. The
calculations are applied to the complex hydrogen phthalocyanine crystal
structure and compared to experimental measurements. Experimental
values found in the literature vary too widely to be useful. Experimental
measurements are described which provide the predicted order of magnitude
and the predicted trend with temperature changes. Finally, a critique
of the experimental method is made with recommendations for improvements.
However, it is concluded that the Huckel Molecular Orbital Theory is
valid for predicting properties of organic semiconductors. Improvements
in control of material purity and in measurement techniques are required
before further considerations can be made regarding uses of organic semi-
conductors.,
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TECHNICAL MEMORANDUM X- 53638

CONDUCTION MECHANISM IN ORGANIC SEMICONDUCTORS

SUMMARY

A brief description is given of the potential uses of organic
semiconductors. The two general classes of organic compounds that are
semiconductors, i.e., aromatic ring structures and charge transfer
complexes are discussed and characterized and examples are given of
each.

A short history of the development of the theory of conduction in
organic semiconductors is presented. 1In order, the Singlet State
Theory, the Triplet State Theory, the combined Singlet-Triplet State
Theory and the Donor-Acceptor Theory are discussed, and the primary
weaknesses of each are pointed out, with referenced experimental data.
The presently accepted Band Theory is discussed in detail along with
the Huckel Molecular Orbital Theory. A procedure is developed and
given for the calculation of resonance integrals and the mobility
tensor by the use of a computer. This procedure is used to calculate
the molecular orbitals and the band structure of hydrogen phthalocyanine.

Measurements were made of the specific resistivity and Hall mobility
of a vacuum deposited sample of hydrogen phthalocyanine using the method
of Vander Pauw and of a single crystal of hydrogen phthalocyanine
using standard techniques. Values for the vacuum deposited sample
were too low and changed with time, indicating high impurity content.
Measurements on the single crystal sample yielded the correct trend
of Hall mobility with temperature as predicted by theory.

Refinements of the experimental technique are required before
these complex materials can be fully characterized. However, the
concept of calculating molecular orbitals and the band structure
as a means of predicting the potential of an organic semiconductor has
been proven to be wvalid.



INTRODUCTION

The interest in studying organic semiconductors is related to the
development of dielectrics and of materials that are suitable for
thermoelectric cooling systems. Considerable effort is being spent on
studying leakage and breakdown mechanisms in dielectrics in relation to
environment. The subject work is expected to help clarify these studies.
Also, since electrical devices generate considerable energy which must
be efficiently dissipated on sealed space vehicles, various cooling
techniques have been studied. Among the promising techniques being
developed is the use of inorganic thermoelectric materials. Since
organic semiconductors because of their low thermal conductivity may
provide advantages over inorganic semiconductors, this project was
started to establish the feasibility, practicality, and limitations of
using organic semiconductors by investigating the electrical conduction
phenomenon in single crystals of organic semiconductors. Further
advantages of this project are that several hundred thousand organic
materials have been prepared, and that organic chemists can fabricate
organic solids with properties matched to specifications. Therefore,
this project may lead to specifications for fabrication of new organic
solids.

There are two general classes of organic compounds that are
considered as semiconductors. They are:

1. Aromatic Ring Structures: These are mostly pure hydrocarbons
with fused ring systems, although some other ring compounds are also
included. Some of these are shown in Fig 1.

2. Charge Transfer Complexes: These are sometimes called ''Donor-

Acceptor Complexes' and are organic or semiorganic systems. Some of
these are shown in Table I.

PRELIMINARY THEORETICAL CONSIDERATIONS

Organic solids are known to have low heats of vaporization and low
melting points. Also, the spectra of organic materials in the solid
phase are almost identical to the spectra in the gas phase. From such
evidence the natural conclusion is that there is a weak interaction
between the molecules and, as a consequence, an explanation can be made
of most of the bulk properties of aromatic molecular solids in terms of
the properties of the individual molecule. However, this is not the
case. The general picture of benzene (Ref. 1) is that ®T-electrons of
the ring form a band of energy states which is only half filled with
electrons. Therefore, an electron can move around the ring without




encountering any impedance. Thus, the benzene ring acts like a 'super-
conductor.' This picture can be extended to more complex molecules. A
crystal formed by such molecules is called a molecular crystal because
the forces holding the crystal together are weak Van der Waals forces.
Such crystals have very low conductivities, therefore, the problem of
bulk electrical conduction in these materials does not involve the
structure of individual molecules. The problem lies in getting the
charge transported from one molecule to the next.

To explain the semi- and photo-conduction of organic. solids, various
theories have been proposed. Most of the theories aim at explaining the
experimentally observed fact that the conductivity of organic solids is
represented by a relation of the type

0 = 0, exp (-E/kT) (L)
where 0 is electrical conductivity of the material.

Oyis a constant and may be seen as the conductivity of the material
at infinitely high temperatures.

E is an energy parameter
k is Boltzmann constant
T is temperature in °K

For inorganic intrinsic semiconductors, there is a similar relation:

= O exp( E. /2kT)

where E. is the (energy gap) difference in energy between the highest
point in the valence band and the lowest point in the conduction band.

Some authors believe that conduction in organic solids is intrinsic
and that Eg = 1/2 E should be identified with some electronic term
separation in the spectrum for the free molecule. As a result, there
are two or perhaps three interesting theories as follows:

Singlet State Theory

Eley and Parfitt (Ref. 2), using the "electron gas' model of Bayliss
(Ref. 3), determined the allowed electron states for a doughnut-shaped
potential box of specified size and identified E, with the energy of the
lowest excited singlet state of the isolated molecule, “E;. Their idea
seems to be that an electron in the excited state of one molecule has
sufficient energy to tunnel through the intermolecular barrier to the



corresponding excited state of another molecule. An examination of this

theory leads to the conclusion that the activation energy for the formation

of charge carriers in a solid free radical should be very small. Therefore,

the solid free radicals should be expected to be good conductors. On

the contrary, the experimental results show that solid-free radicals are B
poor conductors, and for at least two free radicals, the activation

energy is quite large (Table ITI). For molecular solids, the agreement

between activation energy and the energy of the lowest excited singlet -
is very poor. The activation energy as determined from the temperature

dependence of the dark conductivity is typically an electron volt smaller

than the lowest excited state singlet energy. The only agreement between

the singlet state theory and experiment is that the threshold for photo-

conduction invariably corresponds to the energy of the lowest singlet-

singlet transition. However, this cannot be taken as support for the

singlet state theory because this is a feature common to all of the

theories. Thus, it is difficult to support the singlet state theory.

Triplet State Theory

The triplet state theory (Ref. 4, 5, 6), like the singlet state
theory, is essentially a postulate that the lowest excited triplet state
of a molecule is an intermediate in the formation of charge carriers and
that the activation energy, E., is the triplet state energy, 3E1. Though .
the reason for the participation of the triplet state is not clear, it is
interesting to note that the experimental value for activation energy for
conduction is often close to the energy of the triplet state. Some of
the values are included in Table III. However, in many cases, this
agreement is not very good since deviations as large as 0.5 e.v. are known,
Small activation energies for conduction (~0.1 - 0.2 e.v.), in the case
of charge transfer-complexes (Table IV), suggest that the triplets of
the donor and the acceptor molecules are not involved in the generation
of charge carriers. The inverse relation between photoconductivity and
phosphorescence quantum yield reported by McGlynn (Ref. 7), for a series
of related compounds, further suggests that the triplet state is not a
necessary intermediate in the photogeneration of charge carriers. The
same conclusion has been drawn by Almeleh and Harrison (Ref. 8), from
their photoconductivity measurements on pure and doped triphenylene.
These measurements are important because they contradict the only evidence
in support of the triplet state theory drawn from the earlier measurements
by Northrop and Simpson (Ref. 9) on dark conductivity of pure and doped
hydrocarbons. Rosenberg's assumption (Ref. 4, 5) that the quantum yield
for photogeneration of triplet states is temperature dependent, increasing
exponentially with temperature, explains the temperature dependence of -
photoconductivity adequately but leads to an absurd conclusion. According
to Rosenberg's assumption, the yield of the triplet state at 70°K should
be lower by a factor of ~ 107 compared to the yield at room temperature.
This would make it impossible to detect the triplet state at (70°K or




less) low temperatures, while in practice, low temperatures are used to
study the triplet state.

Combined Singlet-Triplet State Theory

Northrop and Simpson (Ref. 9, 10, 11), Simpson (Ref. 12), and
Northrop (Ref., 13), consider the exciton states of hydrocarbons and the
states of ionic character arising from the removal of an electron from
one molecule to a neighbor. Both of these states comprise singlets and
triplets, but in either case, the energy levels converge to the same
limit as the electron is removed to greater distances. This limit is
(Ei - Ea), the difference between the ionization potential and the
electron affinity of the molecules in the crystal. Northrop and Simpson
(Ref. 9) argue that charge carriers are produced by the ionization of
singlet and triplet states under the influence of an applied electronic
field. Singlet states are presumed to be more susceptible to field
ionization than triplet states and, therefore, the effective activation
energy for formation of charge carriers will depend upon the relative
population of singlet and triplet states. The participation of both the
singlet and triplet states in the generated charge carriers fails to
explain the fact that the temperature variation of conductivity in pure
molecular solids is adequately represented by a single activation energy.
This theory again fails in the case of highly conductive donor-acceptor
systems.

To sum up these theories, it is helpful to refer to an interesting
paper by Fielding and Mackay (Ref. 14). They have measured the polarized
crystal and vapor spectra of several phthalocyanines and concluded that
neither 'singlet' nor 'triplet' state theories can be invoked to
satisfactorily explain the electrical conduction in organic semiconductors.

Donor-Acceptor Theory

One of the most elegant theories which explains the generation of
charge carriers is due primarily to Lyons (Ref, 15), and is sometimes
called the Donor-Acceptor theory. He has considered the general problem
of exciton states in a semi-classical fashion. He has shown that the
ionized states in a molecular crystal converge into a band of free states
that can conduct electrons and holes. Merrifield (Ref. 16) has calculated
the ionized states for a one-dimensional molecular solid and has demon-
strated the existence of energy bands. Fox (Ref. 17), also, has adopted
a similar approach. Recently, Kommandeur (Ref. 18, 19, 20) has used this
theory to discuss the conductivity and spin resonance behavior of a
variety of organic semiconductors, including charge transfer complexes.
He begins by discussing the energy balance for the separation of charge
within the solid by calculating a Born-Haber cycle., For this, consider



a solid made up of molecules A and B and perform the following operations:

S.N. Operation Energy Involved
1. Remove Molecule A from solid to vacuum +SA

2. Remove Molecule B from solid to vacuum +SB

3. Ionize Molecule A +I

4, Attach electron to molecule B -Ea

5. Put A" back into solid keeping electrons fixed -Sp

6. Put B~ back into solid keeping electrons fixed -Sg

7. Let electrons near At polarize -P+

8. Let electrons near B~ polarize -P_

9. Let AT and B™ interact coulombically -Q

When these energies are summed, the energy involved in creating a
separated hole and electron is obtained:

Ec,s. = I-Ea-P-P 3)
since, in the first order approximation, polarization depends only on
magnitude of charge and not the sign, P, = P_ = P, so that

E..g = I - Ea - 2P-Q (4)

By estimating various quantities involved, Lyons (Ref. 15) finds for
anthracene, E. ¢ = 5.2 eV, which is much higher than the actual value
of 1.6 eV (for dark current activation energy). Reference 17 did
consider the next nearest neighbor interactions in the polarization
energy. This reduced the calculated value of E. o , but it remained
much higher than the experimental value. Despite the failure in
predicting the right order for activation energy, this theory supports
the experimental evidence that conductivity in anthracene is extrinsic
in nature, and explains the effects of gases on the photoconductivity.
The energetic approach of Lyons (Ref. 15) also is very useful in a
discussion of the properties of the donor-acceptor complexes. The only
evidences against this theory are the results on mixed hydrocarbons
carried out by Northrop and Simpson.




While all of these theories are concerned with explaining the
activation energy, LeBlanc (Ref. 21) made the best approach to the
overall problem of the conduction mechanism which is discussed in the
next section.

MOBILITIES AND BAND THEORY

From a fundamental standpoint, some of the most important advances
in the study of electrical properties of organic molecular solids have
come from the experimental determination of carrier mobilities. LeBlanc
(Ref. 22) and Kepler (Ref. 23) measured the drift mobilities of excess
electrons and holes in anthracene. Their measurements showed that for
anthracene the room temperature mobilities in a direction perpendicular
to the crystallographic ab plane (the cleavage plane for anthracene)
were 0.4 and 0.3 cm?/volt-sec for holes and electrons, respectively.
Parallel to the ab plane, these mobilities were 1°3 and 3:0 cmZ/volt-sec.
The mobilities vary with temperature according to the relation

“.m T‘n

where [ is mobility, T is absolute temperature in °K and 1< n <1.5.
Mobilities of the order of 1 cm?/volt-sec and their variation in
accordance with equation (5) are characteristic of semiconductors with
"energy bands'' rather than those with a "hopping process' conduction.
Therefore, a '"Band Theory'" similar to that which is well known for in-
organic solids to explain the electronic conduction in organic solids,
also may be considered, From this work, LeBlanc (Ref. 21) developed a
modified band theory. The success of his preliminary calculations
sparked a great interest in Band Structure Calculations (Ref. 24, 25,
26). Another interesting experimental development was the first
successful attempt at Hall measurements on organic semiconductors by
Heilmeier, Warfield, and Harrison (Ref. 27). Their measurements on
hydrogen phthalocyanine were followed by some Hall measurements on
copper phthalocyanine (Ref. 28, 29). During the last four or five
years, experimental evidence has been reported on the applicability of
Band theory, so it is important to consider in some detail the actual
calculations. 1In all the Band Structure Calculations, a tight-binding
approximation (a good account of this approximation) is given by Mott
and Jones.

The Theory of the Properties of Metals and Alloys

Dover, 1958, page 65 has been used and energy bands for excess
electrons and holes have been calculated, instead of conventional
conduction and valence bands. LeBlanc has used the Huckel molecular
orbitals Simple Linear Combination of Atomic Orbital - Molecular Orbitals -




Simple(LCAO-MO) to construct crystal wave functions using a Bloch sum

of MO's. For most cases, Htckel Molecular Orbitals (HMO), already exist
in the literature; however, to make Band Structure Calculations, one
should calculate them. Therefore, we start with a short discussion of
Hickel Molecular Orbital Theory. Emphasis is placed on methods and
actual calculations rather than basic theory.

Hiickel Molecular Orbital Theory

In the Hiickel Molecular Orbital Theory for organic solids, we
begin in the customary way of separating o-bonds from the w-orbitals
(for a good discussion of o and w-bonds, see Nature of the Chemical Bond
by Pauling) and treating only the latter. 1In the treatment, a number of
simplifying assumptions are made:

1. The mw-orbitals are co-planar; i.e., they share the same nodal
plane.

2. All bond distances are equal.
3. All non-neighbor interactions are negligible.

Even with these simplifying assumptions, an exact solution of
Schrodinger's equation

H¢ = E¢ (6)

for a polyelectronic system is not possible. 1In principle, although
numerical expressions are possible, they provide an inefficient way of
storing information. Moreover, it is difficult in the extreme to glean
useful patterns from such a tabulation.

We resort, instead, to the approximation that ¢ may be factored
into a set of independent or noninteracting atomic orbitals, X, each of
which describes, in effect, a separate set of electrons.

In the LCAO-MO method, each MO is constructed as:

¢j = le X, + Cj2 Xo + oo + Cjn X, (7
or
(,b-:C 8
] jr)<r &)

h molecular orbital, X 1is the atomic orbital for the

where $j is the jt
atom, and er is the coefficient of Fhe rth atomic orbital in the

L th




jth molecular orbital. These molecular orbitals are eigen-functions of

a Hamiltonian operator which is considered for the m-system alone. In
principle, this Hamiltonian can be set up explicitly, but in actual
calculations it is rarely necessary to consider the explicit form.
Initially, at least, to be once taken as a one-electron Hamiltonian.

The problem is to find the best set of values for the coefficients
in order to obtain the best value for the energy of the molecular
orbital. This problem is approached by using the variation principle,

€ = f¢H¢dT S E
Joar 7 © (9)

Any wave function other than the correct one yields a value for
the ground state energy which is algebraically higher than the true
value. Details of the variation technique are discussed in almost
every book on quantum mechanics (a good book is Quantum Chemistry by
Eyring, Walter, and Kimbal). However, with the variation technique the
problem is reduced to finding the set of coefficients C;y» so that the
function, €, in equation (9) is a minimum with respect to each of the
coefficients. Therefore,

8¢ - o (10)
On carrying out the minimization with respect to each of the coefficients,

detailed algebraic calculations show the result in the following secular
equation:

(H].l - Sll) (le - 812) ----------- (Hln - Sln)
(Hyp = Sy)  (Hyy - So))eeiinnnnn. (H, 5
............................................ =0 (1)
(H 1" Snl (an - Sn2) ........... (Hnn Snn)
where
H. = fxr HX, dT (12)
s_.=Jx_x, dr (13)



The definition shows that the tensors are symmetric, so that

rs sr

and (14)
Ts ST

Thus far, no approximation has been introduced beyond the original
use of a linear combination function as a solution to a one-electron
Hamiltonian. At this point, some approximations which constitute the
simple LCAO, or HMO, method are shown.

The terms, H_ , for r # s are called the resonance or bond integrals.
From the definition, H,.g4 = fxr HX; dT , these integrals represent the
energy of interaction of two atomic orbitals., This interaction energy
clearly depends on the distance of separation of the two orbitals,
therefore, the following assumptions are reasonable., When atoms r and s,
are not bonded in a classical structural expression, the interaction
energy is likely to be small

H. =0 (15)

For atoms, r and s, bonded, Hr is finite, but if all the bond distances
are equal and if the atomic orbitals share the same nodal plane, the

values of the various HrS will have comparable magnitudes. We assume
for bonded atoms

H. . = B (16)

rs

where 3 is the same for all bonded atoms.

The terms Hrr are called coulomb integrals. From the definition,
Hrr =[x HXr dt, the coulomb integral represents approximately the
energy o% an electron in a carbon 2p-orbital. When, as is generally the
case, the m-lattice consists entirely of carbon atoms, it is assumed
that all such integrals are equal and are replaced by symbol ¢.

Hrr = @ Qa7

Relative to the energy of an electron at infinity, both & and B are neg-
ative energy quantities.

The integrals Srs are the overlap integrals. If we normalize the
atomic orbitals, then

10




S.p =1 (18)
For atoms separated by a large distance the overlap integral is
vanishingly small. We make the assumption that for r=2,

Srs =0 (19)
This assumption simplifies the mathematics, although it is not a
drastic measure. It is frequently referred to as the assumption of
orthogonality and S,g is sometimes called the non-orthogonality integral.
Thus,

H = aforr=-s

rs

H. = B for r=s but bonded (i.e. £th
and st atoms are nearest neighbors)

H = 0 otherwise
rs

Srs =1 for r = s
Srs =0 for r#s

With these assumptions, the secular equation yields n real roots of the
form,

o - €j = -mjp j=1,.....,n
or

€j = @+ mjp - (20)

In practice, the entire secular equation is divided by B and
(a-€)/B is set equal to X. This leaves only one unknown quantity, X , in
the secular equation, and the mj's are n values of X obtained by solving
the equation. While writing the secular determinant, one must number
the atoms (this may be done by following any arbitrary sequence) and care
must be taken to include all non-zero f terms. As an example, see
"Calculation of Molecular Orbitals of Hydrogen Phthalocyanine' for actual
calculations on hydrogen phthalocyanine.

Thus, we obtain n values for the energy given as an algebraic sum
of the coulomb integral and some fraction of a bond integral. Hence,
the energies can be represented as a series of energy levels above and
below an energy zero taken as &, Since B is negative, negative values
of the roots (i.e., positive mj) represent energy levels more negative
(more stable) than the energy of an electron in a2 single carben 2p- oxb

ital, and they represent bonding levels which correspond to the Bonding

11



Molecular Orbitals. For mj = 0, the energy of the molecular orbital is
the same as any constituent carbon 2p-orbital, and such a molecular orb-
ital is called a Non-Bonding Molecular Orbital (NBMO). Negative values
of mj represent higher energies (lower stability) than an isolated
carbon 2p-orbital, and the corresponding MO's are said to be antibonding.
An energy level diagram can be drawn.

With n values of the energies, one can evaluate n sets of n
C-coefficients. At first, it appears that we are determining (n+l) un-
knowns (n number of G's and one ¢} with only n simultaneous equations.
Actually, these equations yield only the ratios between the coefficients,

e.g.,

The (n+l)th equation which gives the final values is the normalization
condition,

J62 ar =1 (21)
This yields
Zz C, CSﬁrXs at = 1
r S
or zz
CrC Srs 2 (22)
r S

From the orthogonality condition,
Z ¢z =1 (23)
~ r

Additional equation:
2
C C C
1 2 n = l
—_ + + ... +H— =
(g c
(Cl) ( 1) (C1> 1

2
Z(&). 1 (24)
C

or

12




Since C, is known, evaluation of the C-values can be made. The
application of the HMO method to a specific problem involves the following
operations:

(1) Set up the secular determinant.

(2) Solve the secular equation for n values of mj.

(3) Substitute values of mj in n simultaneous equations and solve
for ratios of C-coefficients.

Determination of C-coefficients can be made by using the following
procedure:

(1) Pick up any one value of the root mj; e.g., my.
(2) Write the complete determinant for this value of the root.
(3) Find all of the co-factors (n in number) of this determinant.

(4) Find the ratio (co-factor) /(co-factor),, for n = 1,
. n 1
call it (Fn/Fl)'

-, 0,
(5) 1If (co-factor)l, with respect to the first row is zero, try
co-factors with respect to any other row.
(6) Find (Fn/Fl)2 for all values of n and add them.
(7) Find the square-root of = (Fn/Fl)z and call it (Fn/Fl)'
n ]

(8) Divide all the (Fn/Fl) values by (Fn/Fl)' This yields the
required C-values for m; i.e. we get n Cln values.

(9) Repeat the same procedure for my, m3, ..., m,. This will
yield n sets of n C-values corresponding to n energy values.

One can easily take care of overlap between adjacent atoms, but
this correction affects only the energy and not the C-value. Corrections
for the variation of 3 have been tried by various workers. (A good
reference is 'Molecular Orbital Theory for Organic Chemists' by
A. Streitwieser).

Application of Group Theory
The principal difficulty in molecular orbital calculations of

molecules with any degree of complexity is the handling of the large
secular determinant. However, if a large, high-speed digital computer

13



is available, practically any interesting T-bonded molecule can be
handled by the Simple LCAO method. The molecular orbital problem can
be simplified considerably by the use of group theory. Of course, it
is advantageous to use group theory even though a computer is to be
used, since it reduces the computer time. From a practical point, the
use of group theory is proposed rather than rigorous mathematics. As
an illustration, consider only the two-fold symmetry axes for no error
is made by assuming that a molecule has less symmetry than it actually
has. Thus, only four symmetry operations are considered.

(1) 1Identity operation - this leaves the molecule undisturbed -
operation E.

X (2) Rotating the formula through 180° about X-axis - operation
C

9
(3) Rotating the formula through 180° about Y axis - operation
cl.
2
7 (4) Rotating the formula through 180° about Z-axis - operation
C,.
2

These operations place each of the atoms in the location of another
similar atom. Results of these operations become clear by considering
the case of the benzene molecule. X and Y axes are

1Y 4

X
in the plane of the molecule and Z-axis is normal to the plane. The C
rotation transforms atoms 1—4, 2—3, and we can easily see the effec%
of other operations. The result of these operations is:

N
N
N

o jounpwhdeE | @
O luvnoe =N WH I (]
NN WER VO | o
o lwN OGN | Q
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The numbers shown below the dotted line represent how many atomic
positions remain unchanged by the operation at the head of the column.
These numbers can be used in conjunction with the D,, character table to
simplify the problem.

The D, character table_has vertical columns corresponding to D
symmetry operations E, Cg, Cy, and C%. The horizontal rows Ij,I3,

Ié and Ia are various representations. These horizontal rows lead to
various proper combinations of arithmetical signs of the X-functions:

YAY

%) 1 1 1 1
) 1 -1 -1 1
I3 1 -1 1 -1
I, 1 1 -1 -1

Each [" leads to an n X n determinant where n is the dot product (sum of
the products of the respective terms in I’ and their counterparts below
the dotted line in the table of results of symmetry operations) divided
by the number of symmetry operations (here four).

For Ii, n=(lx6+1x0+1x2+1x0)+4=2
For ré, n=(lx6-1x0-1x2+1x0)z4=1
For Ié, n=(1x6-1x0+1x2-1x0=4=2
For I&, n=(1x6+1x0-1x2-1x0)+4=1

Thus, for benzene, the 6 x 6 secular determinant is reduced to two 2 x 2
and two 1 x 1 secular determinants.

Construct the trial wave functions for the separate representations
(I""'s) as the dot product of each horizontal row of the character table
with the table of transpositions under the symmetry operations. Thus,
for 0, the following trial wave functions are shown: (X =YX)

Xp + X, + X + X,
Xg + X3 + Xg + X

Xy + X, + Xg + Xg
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X4 + Xl + XA + X1

X5 + X6 + X3 + X2

X6 + X5 + X2 + X3.

Of these, only two are independent. After normalization, MO is shown

as

$ = (Cl/Z) (X, + X3 + Xg + Xg + (Cz/ J2) (X + X,)

The elements of the determinant are found in the usual way:

Hi; = f1/72 (X2 + X5 + X5 + X) H 1/2 (x2 + X3 + X5 + Xg) d7 =a+ B
Hy, = [1/2 (X, + X5+ Xg + X)) HIN2 (X +X,) dT7 = gf
Hy, = N () +x) H1/2 (X +X) d7 = a

Thus, the secular equation for Ij becomes

o + p-¢ N2
= B =0
B,\/Z a-—-€
Dividing by p and putting (a-E)/ﬁ =X
X +1 2
=0
N2 X

or
X =1and X= -2
In a similar way, consider the cases I}, IB, andIL.
For more complex molecules, proceed in exactly the same way. The
use of higher symmetry (actual symmetry) is beneficial in complex

molecules; however, care must be used in constructing the wave functions.

Proceed to the band structure calculations considering the pro-
cedure suggested by Le Blanc (Ref. 21).

Calculation of Band Structure

Band structure calculations for organic solids are based on the fact
that the concentration of excess electrons, or holes, is very small,

16




therefore, a one-particle treatment is valid. Further, the binding
energy of the molecular crystals is very small in relation to excitation
energies of the various excited electronic states of the molecule (and
crystal), so the tight binding approximation may be employed. 1In this
method, one-electron crystal wave functions (unnormalized) are con-
structed from linear combinations of one-electron molecular wave functions.
The possible linear combinations, adopted for the translational symmetry
of the crystal, are (Ref. 19)
n - - - -

v (k) = nil exp (1k-rn) ¢n (r - r) (25)
Here r_ denotes the geometrical center of molecule, n, and the sum ex-
tends over the n molecules in the crystal. The molecular wave function,
d,> 1s understood to be oriented in the crystal in the same way as in
molecule, n. Otherwise, ¢n is the same function for all n.

The Hamiltonian appropriate to an excess electron (or hole), has

the form
-h2
H= <—> v2 + v(r) (26)

2m

where V(r), which determines the crystal field, will be approximated by
V(r) = E Vn(r - rn) 27)

where Vn is the Hartree potential of an isolated neutral molecule. For
an isolated molecular ion, the Hamiltonian is:

Hl’l

1}

(-v%/ o) v + ¥, (28)

from which it follows that

ey = [o W odT (29)

is the energy of the isolated negative ion relative to infinite sep-
aration of the electron and the neutral molecule. Following Balk,
deBruijn and Hoijtink, (Ref. 30) the energy eigenvalue of v is:

E (k) =j\I/*H daT (30)

E (k)

]. -
CIR +-% e + 2 % Cos (k-Tg) eg (31)
where sums are taken over all molecules except the one with its center

located at the origin. The symbols appearing in the above equation are
defined as follows:

;
e, = [O¥H $dT (32)
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e, = ﬁ,* 1)) v, (F-T) ¢, 4T (33)
eg = [o* G- Vg T ¢ @) ar (34)

For calculating the mobility tensor, we are interested only in the
k variation of the energy bands, therefore, it is necessary only to
examine the last term in the above equation. (Integrals in this term
are called resonance integrals).

Calculation of Resonance Integrals

The molecular orbitals which are used are usually linear combinations
of Slater-type atomic orbitals (Ref. 31). (Recently, various other types
of atomic orbitals have been used (Ref. 32).

d>n = % Cni Ui (35)

The coefficients C,; are determined by HMO theory, and Ui is given by
Slater as
5, (1/2
U, = CWED) r, Cos §i exp (-ari) (36)

with @ = 1.64 atomic units = 3.08 x 10° em-1,

The potential function for the neutral molecule is usually taken as

= ZV
Vo= T (37)
where V, is the Goeppert-Mayer and Sklar potential (Ref. 33) of carbon
atom, i. Using Slater type orbitals, we get
V. = -e?r, a6 (ar) + 4 (arp? + 4/3 @ry)dlewp (-2 1)) (38)
; =-efry @r; ary r;)” exp r,

If one neglects three-center, or higher, interatomic integrals (inclusion
of three-center integrals has been discussed in Ref. 14), each inter-
molecular integral is given by

fdpm v, ¢, dT = 3 Cni Cnj fUi v, UJ. aTt (39)
Thus, the problem reduces to that of finding the integrals Jhi Vi U, 47
since coefficients C i and C , are known from HMO calculations. Thése
integrals may be sol¥ed nume%ically; however, a method of calculating
these integrals has been given by Murrell (Ref. 34).

Calculation of Mobility Tensor

For calculating the mobility tensor, it is assumed that carrier




scattering can be described in terms of a relaxation time function, 7 (k)
(Ref. 35), then consider two functional forms for + (k), each involving
one isotropic scattering parameter:

(a) T(k) = T, - constant free time

) 7&k) x v (-1:) =)\ - constant free path

Here,.v (k) is the velocity associated with Wk’ and it is given by

7@ = (%) [9E (%) /ok] (40)
where 3E (K)/ ok = -2 %1 r V. sin k1), (41)

and V= j&m qu)n d7(the resonance integral).

At this stage, it is assumed that A or T _is isotropic. This
assumption, obviously, is an oversimplification since the scattering
parameters should be anisotropic in the real crystal.

For constant free time, T, the components of the mobility tensor
are

by =e o, @iv?/kT (42)
where Vi are corresponding components of V (k).

For constant free path, X\, the components of the mobility tensor
are

B, = eNY.V./ |- — (43)
1] ¢ YY) D7 et
For a comparison of the mobility tensor with experimental values,
generally we calculate My values along orthogonal axes.

CALCULATION OF MOLECULAR ORBITALS OF HYDROGEN PHTHALOCYANINE

Using the simple LCAO-MO (HMO) method, calculations have been made
of the molecular orbitals for hydrogen phthalocyanine. The molecular
structure of the material is shown in Fig 2. The various atoms have
been numbered. Atoms 5, 14, 23, 32, 37, 38, 39 and 40 are nitrogen and
all others are carbon atoms. For such a molecule, justification cannot
be made by using the same @ and g for all the integrals involved. For
nitrogen atoms, the coulomb integral, o, must be replaced by «_ and
resonance integrals with bonded carbons must be replaced by §__ .
Following Streitwieser (Ref. 36), we have @ =, t B, andp;_

n = BC-C.
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With these values of coulomb and resonance integrals, the complete secular
equation can be written:

The correct symmetry of the hydrogen phthalocyanine molecule is
D2h (Ref. 37). However, little error is introduced by using the
symmetry of the molecule as D4 (Ref. 38). The m-electron MO's are; by
definition, all antisymmetric with respect to the molecular plane, and,
therefore, they belong to representations A, ,, A2 , B1 » Bo,, and Eg.
For each of these representations trial wave functions have been con-
structed., The trial wave functions have been constructed in exactly
the same manner as outlined for the benzene molecule with D, ~symmetry.
However, in representation Eg, there is some freedom of choice in
the forms of MO. The trial wave functions used in the calculations
are listed below:

Representation Alu

Cy

¢1=W(x1+X19+xlO+x28+x9+x27+x18+x36)+
22_\[2__(x2+x20+x11+x29+x8+x26+x17+x35)+§_3\72_
(Xy + Xy + X, + Xgg + Xy + Xp5 + Ko+ Xg,) + Cy
2 2
(x4+x22+x13+x31+x6+x24+x15+x33)+_(2§
(x5+x23+x14+x32) +2_6 (X537 + Xg +x39+x40)
Representation Ag
¢2=§_1m(x1+x19+x10+x28-x9-x27 -x18-x36)x;2_@
Xy + Xgo + Xy + Xpg = Xg - Xpg - Xy - Xgg) ¥ ;3
K3 + Xy + Xy + X390 - X7 + K55 - Ko - Xg)) +Z“_\/_2
Ry + Xpy + Xy - Xg - Xy, - Xig - Xg4)
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Representation By,

_GC -
3="1 (X; + X/g - X109 - ¥g + X
7 2
- - +
Co K+ Xy - X ~Xg+X +X
2 2
(Xy + X, = X, - Xpo + X + Xy - X

x13 - x31 + X6 + X5y - x15 - x33) +

Representation B

2u
6=°  x +x_ -X _ -X._-X
e 1 19 10 28 9
2 2
Xy * X0 Xy - Xy~ Xg F Xy +
X, - X, -X_+X_ +X)+C
30 7 25 16 34 P
2 2
X +X_+X )+C5(x + X -
24 15 33 E_ 37 39
Representation E
C c
= "1 - - 2
5 2_(X1+X18 Xiq X36)+§_

C3 (X3 + X1 - X971 - x34) + %4 (x

2 2 4

. _ C
(x5 + X, - X4 x32) + 59 (x6 + X

C
X1, - X505 - Xap) + §§ X, + X,, - X

8 11 26 29

9t X, - X9 - X30) +

c
- X5 - X)) + 23
26 17 35 >

Cy
16 - X340 T3 (X, + Xy

Cs . -
R X + Xy - Xy, - X3,)

Co
-x27+x18+x36)+_2 5
Xoo) + 03 (X, + X, - X
350 t = Xy + X, - X,

2 2
X, + Xyy - X3 - Xy - X,
X35 = X40)
Xy + X7 - Xy - X39)
+X.-X_ -X Cs

15 = Xpp “%g3) + 2
2
c
i i 7
13~ X9 - X39) + T X +

C
- + -9 + -
X (X9 X1
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Proceeding in the usual way, the following secular equations are
obtained:

Representation A

1lu
X + 1) 1 0 0 0 0
1 X 1 0 0 0
0 1 X+ 1) 1 0 0
1=0 (44)
0 0 1 X (0.8 N2) (0.8 N2)
0 0 0 (0.8\2) (X + 1) 0
0 0 0 (0.82) 0 X+ 1)
Representation A2u
(X - 1) 1 0 0
1 X 1 0
=0 (45)
0 1 (X - 1) 1
0 0 1 X
Representation B1u
X - 1) 1 0 0 0
1 X 1 0 0
0 1 X -1) 1 0 =0 (46)
0 0 1 X 0.8 \2
0 0 0 0.8N2 X+ 1
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Representation B

2u
X+ 1 1
1 X
0 1
0 0
0 0
Representation Eg
xX-1 1 0
1 X 1
0 1 (X-1)
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0
1 0

X + 1) 1
1 X
0 0.8 \2
0 0 0
0 0 0
0 0 0
0.8 0 O

0.8 (X+1) 0.8 0

0

0

0.8 X 1

0 1 (X+1)

0 0 1
0 0 0
0 (0.82) 0

0

0

0
0.8 N2
X+ 1)
0 0
0 o0
0 o0
0 0
0 o0
0 o0
1 0
X 1
1
0o o0

1

0

+1) X+ O

(X+1)

(47)

=0 (48)

In these equations, X = (a- E)43 where o is the coulomb integral

for carbon and B is the resonance integral for carbon.

The coulomb

integral for nitrogen and the resonance integral between C and N have
been taken as listed earlier.

Energy eigenvalue parameters, X, and corresponding C-coefficients
for various values of X have been computed by using an IBM 7094 computer.
The program was written and checked by using the secular equation for
Only 0.62 minutes of computer time was required.

representation Azp.
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This may be compared with the time required (~ 26 minutes) for solving

the 40 x 40 determinant equation obtained when the group theory was not
used. Values of the energy eigenvalue parameters (X) and C-coefficients
are listed in Tables IV, V, VI, .VII, VIII, and IX. Figure 3 shows the
energy levels. Energy levels in group specie Eg are doubly degenerate
and can have up to four electrons.

CALCULATION OF ELECTRON DENSITIES AND MOBILE BOND ORDERS

From the computed values of Hickel coefficients one can calculate
electron densities at various atomic sites and mobile bond orders. An
electron, occupying the molecular orbital, ¢., will spend a fraction of
its time given by the expression /C.k/ in the atomic orbital, X,
consequently, the total average chafge on the atomic site, k, will be

2
p =Zn;/Cy/ (49)

where the summation is extended over all the occupied ¢.'s and nj is
the number of electrons in the orbital, é.. pis the c%arge in units
of electronic charge. 1In this case, the gummation is taken over 21
MO's of the lowest energies since this molecule has 42 w-electrons.
(Each MO of the Eg specie has been considered equivalent to two MO's,
and then, nj = 2 for all values of j). The computed values of p are
shown in fable X. In addition to electron densities, there is
another quantity used in determining the electronic structure of the
molecule called the mobile bond order, and defined as

Prg = 22 Cyp C (50)

r
This is the mobile bond order of bond, rs. The calculated values for
the mobile bond orders of various bonds in phthalocyanine are shown in
Table X. Also, included in Table X are the values of p and P.g as
calculated by Basu (Ref. 37). The difference between the two sets of
data is appreciable because of Basu's initial approximation of re-
placing all nitrogen atoms by carbon atoms. Of particular significance
is the fact that, contrary to Basu's calculations, the charge density
at atomic site 5 is not minimum. Instead, the charge density is
minimum at atomic site 4, This explains the oxidation reaction of
phthalocyanines with acyl peroxide, organic hypochlorite, ete., and

the formation of various dyes from metal phthalocyanines.

CALCULATION OF BAND STRUCTURE OF HYDROGEN PHTHALOCYANINE
Crystal Structure

In previous discussion, the calculation of the band structure
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essentially means evaluation of resonance integrals (refer to main
topic). For evaluation of resonance integrals, it is necessary to

know the orientation of molecules in a unit-cell and the coordinates

of various atoms in a molecule. A detailed X-ray analysis of the
hydrogen phthalocyanine crystal has been reported by Robertson (Ref. 38).
The crystal is monoclinic with two centro-symmetrical molecules per
unit-cell of volume 1173 8. The space group is Cgh (P21/a).

a=19.85 %
b= 4.72 &
c=14.8 8

B=122.258%

A schematic representation of the unit-cell which illustrates the
positions of the centers of molecules is shown in Fig 4, The coordinates
of various atoms in a molecule with respect to molecular axes L and M

are shown in Fig 5 and Table XI. Coordinates of these atoms with
respect to the monoclinic crystal axes (with center of symmetry of
molecule 1 in Fig 5 as the origin) are shown in Table XII.

Calculation of Resonance Integrals

The hydrogen phthalocyanine molecule has 42 m-electrons, and each
energy state is occupied by two electrons. (Energy states belonging
to group specie Eg are occupied by four electrons since they are doubly
degenerate states). Therefore, the energy level diagram (Fig 3) immediately
suggests that an excess electron and an excess hole will go to molecular
orbitals ¢e and LIS respectively, given by:

¢, = 0.16348 (x1 +X g - Xqg - x36) + 0.16556 (X, + X7 - X0 - X36)
-0.16139 0, + X g = X,y = Xg,) - 0.32899 (X, + X5 = X, - X33)
019652 (Xg + X[, = Xpq = Xz,) + 0.08645 (X + X5 = Xy = Xg)
20.06405 (X; + X;, = X,q = Xgg) - 0.04295 (Xg + Xpq = Xy = Xpq)
+0.04351 (x9 + Xlo - x27 - X28) - 0.09906 ()(37 + X38 - X39 - X4O)
bh = %%%32 X1 + Xpg + X g + X5 = Xg = X7 = Xpg = Xg¢)
o.gzgae Xy + X0+ Xqq +Xp9 = Xg = Xpp = Xgp = X55)
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0.22644
T Talr (gt Xgy FXgy FXgg - Xy m Xps m Xye 7 Xau)

0.7677
- T (gt Xgp F X3t Xgy - X = Xy, - K5 - Xg3)

Where X, is the 2p_ atomic orbital for carbon or nitrogen, as the case
may be,lon the ith atomic site as shown in Fig 2 and Table XIII.

EXPERIMENTAL MEASUREMENTS

Two schools have reported successful Hall measurements on copper-
phthalocyanine single crystals (Ref. 28 and 29), unfortunately, the two
results do not agree. The results of Heilmeier and Harrison (Ref. 29)
differ from crystal-to-crystal. Therefore, there is a need for more
reliable and reproducible Hall mobility measurements on hydrogen and
copper phthalocyanine, with primary interest in the order of magnitude
of the Hall mobility and its variation with temperature. Two different
experimental techniques have been used for measuring Hall mobility.

Measurement of Specific Resistivity and Hall Mobility
For a Vacuum Deposited Sample-Method I

This method is based on the theory developed by Vander Pauw (Ref.
39). It has an advantage in that we do not need any fixed geometry of
the sample. In fact, the Hall mobility and specific resistivity of a
flat sample of arbitrary shape can be measured without knowing the
current pattern if the following conditions are fulfilled:

1. the contacts are at the circumference of the sample
2. the contacts are sufficiently small
3. the sample is homogeneous in thickness, and

4, the surface of the sample is singly connected, i.e., the
sample does not have isolated holes.

In the theory, some resistance parameters are defined as follows:

Consider Fig 6 in which A, B, C, and D are four successive contacts
fixed on arbitrary places along the circumference. The resistance
RAB’ cp is defined as the potential difference (VD - V.) between the
contacts D and C per unit current through the contacts A and B. The
current enters the sample through the contact A and leaves it through
the contact B. Similarly, defined are the resistances Rpes DA and
RBD’ AC where the current flows through contacts BC and BD, respectively.
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Following Vander Pauw, specific resistivity, p, is given by

p = _md__ (RAB CD+RBCD‘A‘) f RAB, CD (51)

where f is a function of the ratio (RAB,CD/RBC,DA) only and can be ob-
tained by using the graph presented by Vander Pauw (Ref. 38).

The Hall mobility, K y» can be determined by measuring the change of
the resistance R when a magnetic field is applied perpendicular to
the sample. The Rall mobility is given by

b= . A ('RBD,AC)

d
= 52
H B 5 (52)

where B is the magnetic induction and A(R R’ﬁc) the change of the
resistance RBD’AC due to the magnetic field "d' is the thickness of
the sample.

Combining equations for p and Py

o2 4 (Rpp ac) (53)
(Rpg,cp t Rpe,pa) " £ (Rag cp/Rac,a)

In our measurements, we used powdered hydrogen phthalocyanine and
vacuum deposited it on a glass substrate. The vacuum deposited film
was of 'clover shape.' This sample shape has many advantages, it gives
a relatively large Hall effect at moderate heat dissipation which is
important when measuring materials of low mobility such as phthalocyanines.
Electrical contacts were made by applying a fine silver paste dot at
the tip of a #40 AWG wire. The wires were held in position under spring
action and glued to the glass substrate with epoxy cement. A Keithley
610 R electrometer was used to measure the potential differences along
with a Keithley secondary standard resistance of 101l ohms which was
used to measure the current. The values of resistivity obtained were
much lower than the values existing in the literature. Moreover, the
resistivity as well as the mobility values changed with time. Such
behavior has been shown (Ref. 40) to be due to impurities. Further
work with this technique was discontinued because material with greater
purity was not available.

Measurement of Hall Mobility with Single Crystals - Method II

In the second methad, Hall measurcments were made wiih singie
crystals of hydrogen phthalocyanine. Usually, measurements with single
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crystals need a proper geometry (a rectangular plate) as shown in

Fig 7. If the width of the plate is b and the thickness d, a current,
I, is passed through the plate and the conductivity, o, determined by
measuring the voltage, V., between two contacts a distance, 1, apart.
Then

. (54)

I
g = ——
Ve bd

If the voltage produced by a magnetic induction, B, between the
Hall probes, is VH’ then

R="Hd (55)
B . I

where R is Hall constant.

If we presume that there is only one type of carrier (either hole
or electron) then the carrier mobility, By is given by

by =|R0'| - Vu (56)

Ve

ol
o

The phthalocyanine crystals are very small, needle shaped, and of
irregular cross-section. Therefore, it is not possible to report correct

values of 0, R, or By- However, our measurements do provide the order
of magnitude,

The crystals were mounted on a glass substrate using epoxy cement.
Fine copper wire electrodes were attached to the crystals under a
microscope using a silver paint. A micromanipulator was used for this
purpose. The electrodes were held in position by spring action. The
electrical connections are shown schematically in Fig 8. The output
across the Hall probe was recorded as a function of time, and the Hall
voltage was measured by using the integration technique (Ref. 27).

The IR drop (~0.8 volts) across the Hall probe was partially
suppressed by using the zero-set of the electrometer. Actual dimensions
of the crystal were measured by a traveling stage microscope. Results
of the measurements are indicated below and in Table XIV.

Crystal Dimensions

0.203 mm.
0.015 mm.
0.008 mm.

n R

1
d
b

N
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Hall Measurement Values

Temperature Hall Voltage Magnetic Field Hall Mobility
293°K 200 v 8 K Gauss 1.6 cm?/volt sec.
328°K 180 v 8 K Gauss 1.4 em?/volt sec.

DISCUSSION AND RECOMMENDATIONS

These measurements show that Hall mobility is lower at high
temperature, and this trend is predicted by the Band Theory; however, we
cannot attach too much significance to our limited results because of
the following difficulties in the experimental arrangement:

1. The minimum sensitivity of the electrometer is inadequate.
2. The potential drop between Hall probes could not be eliminated.

3. The effect of oxygen is pronounced on the conductivity of
phthalocyanines, and did not control the oxygen environment.

More refined measurements are proposed employing a much more
sensitive electrometer. A cylindrical heater which is capable of
giving a much higher temperature than the present one has been fab-
ricated. 1Inside this heater, we can maintain an inert nitrogen at-
mosphere. To control the IR drop, more precise Hall probes have been
mounted. An arrangement for measuring the photo-Hall effect has been
completed. 1In earlier measurements a glass substrate was used, but in
the future, a quartz substrate will be used to reduce substrate effect,
if any. These experimental refinements will be required along with
improvements in material purity and with techniques for growing larger
crystals before the practical uses of organic semiconductors can be
examined in detail.
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TABLE I - SOME DONOR-ACCEPTOR COMPLEXES REGARDED AS ORGANIC SEMICONDUCTORS

DONOR

ACCEPTOR

1, 6 - Diaminopyrene

Perylene

Coronene

Tetracene

Pentacene

Naphthalene

Morpholinium

5,8 - Dihydroxyquinolinium
Triphenylmethylphosphonium

Diphenylamine

Chloranil, Bromanil, Iodanil

Iodine
Iodine
TCNE
Chloranil
TCNE

TCNQ

TCNQ

TCNQ

p - benzoquinone
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TABLE II. - MEASURED PROPERTIES OF FREE RADICALS

ACTIVATION ENERGY | RESISTIVITY
RADICAL E, eV P, ohm-cm
DPPH 0.16 - 0.36 10°
COPLINGER'S RADICAL 1.45 108
BANFIELD AND KENYON'S RADICAL 2.31 101°
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TABLE IV, - GROUP SPECIE AND ENERGY PARAMETERS (X)

N A, B, B, B
-2.5732165 2.1935270 2.2398093 -2.1935270 2.21845758 | 0.77759276
1.5732165 |-1.1935271 |-1.8879976 1.1935271 [-2.481683291-1.45955473
-1.8273178 1.2949629 1.3810755 -1.2949629 1.30593557 1 1.49007338
0.8273178 1-0.29496289} 0.26711276 0.29496289(-0.01267105}-1.83815014
-0.,99999995 -0.99999995 | -1.0000000 |-0.99999998 }-0.99999993
-0.,99999999
TABLE V. - C-COEFFICIENTS FOR VARIOUS ENERGY PARAMETERS (X)
(FOR GROUP SPECIE Alu)
X(1) X(2) X(3) X (4 X(5) X6)

Cl 0.171777201 0.13431411] 0.60636874} 0.40800545] 0.64676169(0.64676167
C2 0.270242891-0.34561947 | 0.50165980{-0.74555576| 0.00000004|0.00000001
C3 0.52361629 0.40942017| 0.31032317] 0.20880617]|-0.64676165+0.64676166
Ca 0.553518941-0.70790731 |-0.24492389| 0.364000521-0.00000001]0
C5 0.39806038| 0.311246901(-0.334937471-0.22536833} 0.28583096|0.28583097
C6 0.39806038 | 0.31124690|-0.334937471-0.225368331 0.28583096]|0,28583097
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TABLE VI. - C-COEFFICIENTS FOR VARIOUS ENERGY PARAMETERS (X)
(FOR GROUP SPECIE A2u)

X X
X X(2) (3) (%)
Cl 0.42308150 0.31208198 0.76770003 0.36639250
C2 -0.50495931 0.68456036 -0.22644305 0.47446472
C3 0.68456040 0.50495933 -0.47446469 -0.22644302
04 -0.31208204 0.42308159 0.36639251 -0.76770002

TABLE VII - C-COEFFICIENTS FOR VARIOUS ENERGY PARAMETERS (X)
(FOR GROUP SPECIE B, )

X X
*(1) X(2) (3) (4 X(s)
Cl 0.38531028 0.05872509 0.75459184 0.36223332 0.38401224
C2 -0.47771136 0.16959860 -0.28755654 0.26547615 0.76802459
C3 0.68467207 0.26147667 -0.35745454 -0.43314539 0.38401231
C4 -0.37115143 0.58554539 0.42377372 -0.58292288 0.00000001
CS 0.12960945 0.74602562 -0.20135658 0.52047614 -0.33942212
TABLE VIII - C-COEFFICIENTS FOR VARIOUS ENERGY PARAMETERS (X)
(FOR GROUP SPECIE B, )
X X X X
X1y 2) (3) (&) (5)
Cl 0.42308160 0.31208204 0.76770002 0.36639251 0.59962535
C2 0.50495933 -0.68456039 0.22644299 0.47446470 0
C3 0.68456035 0.50495931 -0.47446476 -0.22644303 -0.59962535
C4 0.31208196¢ -0.42308152 -0.38839287 0.76770002 0
C5 -0.00000011 -0.00000006 0.00000011 0.00000001 0.52999894
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TABLE X - CHARGE DENSITIES AND BOND ORDERS

Charge Density Bond Order
Author's Calculations | Basu's Values| Author's Calculations |{Basu's Values
1 =1.,05912 1.074 1,36 = 0.76577 0.46
2 = 1.55937 0.990 1,2 = 0.88568 0.36
3 =1.04888 0.962 2,3 = 0.86738 0.38
4 = 0.71875 0.922 3,4 = 0.45939 0.36
5 = 1.46410 0.778 4,5 = 0.62901 0.48
37 = 1.48179 1.136 4,37 = 0.02593 0.09
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TABLE XI - ATOMIC COORDINATES RELATIVE TO MOLECULAR AXES L AND M

ATOM M ATOM L M
1 5.07 4.20] 21 -5.07 -4.20
2 4.08 5.17) 22 -4.08 -5.17
3 2.75 4,771 23 -2.75 -4.77
4 2.41 3.42] 24 -2.41 -3.42
5 3.40 2.45) 25 -3.40 -2.45
6 4.73 2.841 26 -4.73 -2.84
7 3.43 o] 27 -3.43 0
8 2.71 1.13] 28 -2.71 -1.13
9 1.38 1.32} 29 -1.38 -1.32
10 1.14 2.64} 30 -1.14 -2.64
11 0 3.32] 3t 0 -3.32
12 -1.14 2.64] 32 1.14 -2.64
13 -1.38 1.32] 33 1.38 -1.32
14 -2.71 1.13] 34 2.71 -1.13
15 -5.07 4.20] 35 5.07 -4.20
16 -4.08 5.171 36 4.08 -5.17
17 -2.75 4,77} 37 2.75 -4.,77
18 -2.41 3.42) 38 2.41 -3.42
19 -3.40 2.45] 39 3.40 -2.45
20 -4.73 2.84] 40 4.73 -2.84
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TABLE XII1 - COORDINATES OF ATOMS IN A MOLECULE WHOSE CENTER LIES

AT (A/2, b/2) POINT

ATOM
1. 3.11 5.48 -4.,22
2, 3.58 6.12 -2.80
3. 5.02 5.79 -1.46
4. 5.99 4,84 -1.53
5. 5.53 4.20 -2.95
6. 4,09 4.53 -4.29
7. 5.69 2.50 -3.79
8. 6.83 3.26 -2.62
9. 7.98 3.34 -1.09
10. 6.57 4.24 -0.39
11, 8.32 4.67 1.10
12. 9.73 4,15 2.14
13. 10.59 3.23 1.96
14, 11,94 3.04 3.37
15. 12.69 5.08 6.99
16. 11.27 5.70 6.21
17. 10.21 5.57 4.61
18. 10.54 4,65 3.80
19. 11.95 3.93 4.57
20. 13.01 4.15 6.16
1 16,75 -0.76 4,22
2! 16.28 -1.40 2.80
3! 14.84 -1.07 1.46
4! 13.87 -0.12 1.53
5' 14,33 0.52 2.95
6' 15.77 0.19 4.29
7! 13.13 2.22 3.79
8' 13.03 1.46 2.62
9' 11.88 1.38 1.09
10' 12,29 0.48 0.39
11! 11.54 0.05 -1.10
12! 10.13 0.57 -2.14
13! 9.27 1.49 -1.96
14! 7.92 1.68 -3.37
15! 7.17 -0.36 -6.99
16' 8.59 ~-0.98 -6.21
17! 9.65 -0.85 -4.61
18" 9.32 0.07 -3.80
19' 7.91 0.79 -4.57
20° 6.85 0.57 -6.16
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Q2

ANTHRACENE NAPHTHACENE
PERYLENE
PYRENE o)
NX *
y
N
PHENAZINE 0

ANTHRAQUINONE

it

HYDROGEN PHTHALOCYANINE

FIGURE 1 - SOME ORGANIC SEMICONDUCTORS WITH AROMATIC RING STRUCTURES
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FIGURE 2 -

HYDROGEN PHTHALOCYANINE




AI AZ B| Bz E
2.1935270 2,2398093 2,21845748
1.5732165 1.49007338
1.2949629 1.3810753 1,30593557
1,1935271
0.82731789 0.77759276
0,26711276 0.29496289
0.01267105
0529496289
0,9999995 0.99999995 1.000000 0.09999993
0.9999999 0.99999998
1,1935271
1.2949629
1.45955473
8273178 1.8879976 1.83815014
2.1935270
2.48168329
2.5732165

FIGURE 3- (ENERGY LEVELS ARE DRAWN WITH REFERENCE TO«a =0 LINE AND THE
SPACINGS BETWEEN THE LEVELS IS PROPORTIONAL TO THE ENERGY
DIFFERENCE DIVIDED BY B)



*tl

FIGURE 4 - THE UNIT CELL OF THE MONOCLINIC HYDROGEN PHTHALOCYANINE CRYSTAL
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FIGURE 5 -

ORIENTATION OF MOLECULAR AXES, L AND M
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